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Abstract-The problem of synthesis of underconstrained structures is discussed. Two new classes
of reticulated space underconstrained structures are presented. It is shown that they can be stiffened
by prestressing. A version of the procedure of underconstrained structures initial stability checking
is described. © 1997 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

Pin-bars assemblies in which the number of degrees of freedom (equilibrium equations) is
greater than the equilibrium matrix rank are classically defined as mechanisms or kinematic
chains. The rank deficiency means existence of small displacements which do not produce
elongations of members. The difference between the number of equilibrium equations an
the equilibrium matrix rank is nothing but a degree of kinematic indeterminacy. Although
in a general case a nonzero degree of kinematic indeterminacy indicates an impossibility
for the assembly to bear an external load there is a specific class of the kinematically
indeterminate assemblies called underconstrained structures which do bear an external
load. Underconstrained structures may be statically determinate or indeterminate, and they
are always kinematically indeterminate. The last indicates the distinction between the
underconstrained nonconventional structures and fully constrained conventional ones
which are always kinematically determinate.

An interest in the theory of underconstrained structures arised lately: Pellegrino and
Calladine (1986), Kuznetsov (1991), Vilnay (1990); although they were used in engineering
practice. Some theoretic results are presented in Volokh and Vilnay (1996) from which
concepts and notations are taken for this work.

The present paper is devoted to the problem of the synthesis of underconstrained
structures and new classes of these structures are presented.

2. ON THE GENERAL PROBLEM OF THE SYNTHESIS OF UNDERCONSTRAINED
STRUCTURES

There are two crucial requirements for the design of underconstrained structures.

(i) Underconstrained structure must possess initial equilibrium state

(ii) The initial equilibrium state must be stable

Kk
--+ positive definite.

(1)

(2)

Here, Ao is an m by n initial configuration equilibrium matrix; Po is an n-dimensional vector
of initial member forces; Qo is an m-dimensional vector of initial external loads ; Kk is an
m-r by m-r "kinematic" stiffness matrix and r is matrix Ao rank (Volokh and Vilnay,
1996).
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Arbitrary initial configuration of underconstrained structures with arbitrary dis­
tribution of initial member forces could satisfy the first requirement for fitted initial external
load obtained by direct multiplication in eqn (1). This initial state could be stable if the
second requirement is satisfied. Unfortunately, in the general case, it is impossible to realize
practically the correspondent fitted load. This is the reason why it is preferable to design
structures which possess initial self stress state or prestressing

The self stress existence means a nontrivial solution of eqn (3), which is possible where

r = rankAo < n.

(3)

(4)

In this way, requirement (i) is reformulated as a requirement to find m pin-joints coordinates
to satisfy condition (4).

Let

r = n-I (5)

then the general number of matrix Ao zero minors is C;:'. In the general case only m minors
are necessary to form a closed system of equations with relatively m unknown nodal
coordinates. If m = n then C7 = I and there is only one equation to be satisfied. The
remaining m - I equations can be obtained from some other conditions. If m = n+ I then
C~+ I = n+ I = m, there are m nonlinear equations with m unknowns. The algorithm
described in Vilnay (1990) is acceptable in both considered cases.

The general number of possible systems of m equations is calculated by the use of the
formula

L= Cc;:,. (6)

This value indicates the general number of attempts to find nodal coordinates which satisfy
condition (4).

Ifm = n+2 then C~+2 =(n+ 1)(n+2)j2; L = C('n+}1)(n+2j/2'

It is obtained for n = 2: C~ = 6, L: = 15; for n = 3: C~ = 10, L~o = 252; for n = 5:
C~ = 21, LL = 116,280. Consequently, it is necessary to consider 116,280 systems of 7
nonlinear equations even for the structure comprised of five members. Thus, the direct
algorithm seems to be unaccceptable for m > n+ I.

In the case where

r<n-I (7)

the situation is becoming worse.
Considered simple calculations show that there is not a general way to design under­

constrained structures which possess initial self stress state. In fact, up to now new under­
constrained structures were practically created by a happy accident thanks mainly to
intuition but not to the calculation. Nevertheless, it is possible to design underconstrained
structures by far-ranging extensions of some simple cases which can be considered analyti­
cally. This method of design is demonstrated below. If an appropriate self stress state is
found it is necessary to check its stability or to find self stresses distribution which provides
it.

Generally, the initial self stress state of considered structures may be presented as a
solution of homogeneous eqn (3) in the form
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Po = IPI +... + In-rPn-r'

In this case, the "kinematic stiffness" matrix takes the form
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(8)

(9)

(10)

Here W is an m by m - r matrix whose columns are coordinates of matrix A6" nullspace
basis vectors and m by m matrix D(p;) is obtained from the equality

Api = D(Pi)U (11 )

where A is an m by m perturbated equilibrium matrix and U is the vector of nodal
displacements (Volokh and Vilnay, 1996).

Thus, to provide stability of the initial state it is necessary to find the set of t i which
leads to the positive definite matrix Kk

• It may be effectively carried out by the Calladine­
Pellegrino (1991) algorithm. The idea of this iterative algorithm can be described briefly as
follows.

It is necessary to maximize parameter e by varying I, under constraints

bJ(nf tiK~)bj ~ e ~ 0, j = 1, ... 1
1=1

(12)

(13)

where bj is a vector of m-dimensional Euclidian space 9lm ; ti-, tt are lower and upper
boundaries for parameter t i •

On the first iteration bjs are set as unit base vectors in 9lm and 1= m. After replacing
parameters t i by the difference of two positive values the initial problem is nothing but a
linear programming problem. If its solution {I\I), ... , t~l)r} leads to positive definite Kk (all
eigenvalues are positive) then the procedure is finished. Otherwise, m new vectors which
are eigenvectors of matrix

(I)

K k = '" t(I)Kk
L. I I

i=l

are added to existing unit vectors bj and all calculations are repeated.
The new solution of the linear programming problem {t\2), ... , t~2~r} leads to a new

matrix

(2)

Kk = '" t(2)Kk
L. I I

i= 1

whose positiveness is checked and so on.
Finally, two situations are possible. The suitable set of nonzero parameters t i is found

or the set is comprised of zeros. The last one means that the structure is unstable and can
not be stiffened by prestressing.
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Fig. I. Plane trusses with degrees of freedom in plane.

3. PLANE TRUSS

The plane truss which is shown in Fig. 1(a) is an underconstrained structure. It
possesses m = 20 degrees of freedom in plane and n = 17 members. Generally speaking a
structure possessing topology of such type does not necessarily have self stress state.
Nevertheless, it is possible to choose a structure geometry to satisfy some of the 20 equi­
librium equations automatically. Let us satisfy not nodal equilibrium equations, but global
moment equilibrium equations for cut out parts of the structure. If the structure is cut by
curve I and the moments equilibrium relative point of intersection ofmembers 2 and 8 lines
is considered, the member forces do not produce moments. The support reactions lie on
the straight line which connects the support hinges. Thus, if the point of intersection of
members 2 and 8 lines lies on the straight line which connects the supports then the moments
equilibrium equation is satisfied automatically. This argument can be repeated for cross­
sections II, III and IV. Thus, if the points of intersections of corresponding members lie on
the "supporting" straight line, then four equilibrium equations are automatically satisfied.
Consequently, instead of 20 independent equilibrium equations there are only 20 - 4 = 16
independent equilibrium equations, 17 unknown member forces and the structure possesses
self stress state. In particular this requirement is formulated as a requirement of cor­
responding nodal coordinates affineness.

Another example of affine configuration is presented in Fig. I(b).
In the Appendix a numerical procedure is described based on CP-algorithm, and was

applied for checking the stability of self stress for both types of the plane trusses with initial
coordinates
X = {20, 50.4, 20, -50.4,40,57.6,40, -57.6,60,60, 0, -60,80,57.6,80, -57.6,100,
0.4,100, -50.4V, XS = {O,O, 120,0}T for Fig. l(a);
X = {20, 50.4, 20, 42, 40,57.6,40,48,60,60,60,50,80,57.6,80,48,100,50.4, 100, 42} T,
XS = {O,O, 120, 0V for Fig. I (b).

Here X, XS are vectors of nonsupported and supported nodes, correspondingly. The
structures are stable in both cases.

Then the same trusses were considered by adding out of plane degrees of freedom (Fig.
2). Initial coordinates in these cases are the following ones
X = {20, 50.4,20, -50.4,40,57.6,40, -57.6,60,60,60, -60,80,57.6,80, -57.6,100,
50.4, 100, - 50.4,0,0,0,0,0,0,0,0,0, O} T, xS = {O, 0,120,0,0, 0V for Fig. 2(a) ;
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Fig. 2. Plane trusses with degrees of freedom in 3D space.

x = {20, 50.4, 20, 42, 40, 57.6,40,48,60,60,60,50,80, 57.6,80,48, 100,50.4, 100,42,0,
0,0,0,0,0,0,0,0, OV, XS = {O,O, 120,0,0,0}T for Fig. 2(b).

The stability test shows that the first type truss [Fig. 2(a)] is kept stable in 3D space
but convex truss [Fig. 2(b)] becomes unstable in real 3D space.

It is interesting to note that Kuznetsov (1991) checked the stability of the described
types of trusses only in plane and concluded that the stability of the convex plane truss
[Fig. I(b)] is "somewhat contrary to intuition". The presented stability test in 3D space
explains this contradiction and justifies the intuition.

This result explains why only the first type trusses are applied in practice in axi­
symmetric roofs. It is possible to say that introduction of convexity into the considered
trusses leads to their instability. This conclusion is rather disappointing because convex
trusses are preferable in practice.

Nevertheless, a simple generalization leads to some types of underconstrained stable
convex trusses space assemblies.

4. UNDERCONSTRAINED STABLE CONVEX SPACE TRUSSES

The convex plane truss became unstable because of the third dimension. It is possible
to try to stabilize the truss by adding some members in the out of plane direction. Figure 3
presents a simple space structure of this type. There are two convex plane trusses in one
direction and two families of members in the other one. This structure is underconstrained:
m = 24, n = 22 and initial equilibrium matrix rank is 19. Consequently, self stress state is
obtained with accuracy of three unknown parameters t = {f l , f2, f3}. The CP-algorithm (see
the Appendix) leads to the following values at the first iteration

t = {I 00, 57.8697, -100}

where from matrix Kk eigenvalues are

{I 10.343, 79.7308, 58.7577,42.4882, 1.50286}

and Kk is positive definite.
Thus, the structure satisfies requirements (i) and (ii), and the obtained self stress state

is stable. It is interesting that in this case the members of the plane trusses are under tension
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,-
Fig. 3. An example of the space underconstrained stable assembly of the first type.

and the remaining members (7-12) are under compression. Consequently, this structure
may be comprised of six bars and two cable trusses.

Another class of space convex structures is resulted from two crossing families of the
plane convex trusses [Fig. 4(a,b)]. These type of structures possess self stress state only if
the lower and upper surfaces are affine.

The structure presented in Fig. 4 is symmetric with repeated quarter. It is under­
constrained: m = 150, n = 145 and the initial equilibrium matrix rank is 135. Consequently,
self stress state is obtained with an accuracy of 10 unknown parameters t = {t l, ... , tlO}.
Four iterations were carried out to reach the following values
t = {100, 100, -29.6192,51.4541,2.5011,35.6458,8.6278,30.83, -3.7714, -2.7516}.

Matrix Kk eigenvalues are
{2.14939, 1.16233, 1.10458, 0.906815, 0.638209, 0.469516, 0.461963, 0.402521, 0.36619,
0.278384,0.220661, 0.209174, 0.13953, 0.121434, 0.0860508}.

Thus, the structure may be stiffened by prestressing.

5. CONCLUDING REMARKS

(1) Underconstrained structures lack members in comparison with conventional ones.
It means that the underconstrained structures are significantly lighter and hence are of
natural interest for structural engineers. Unfortunately, design of the underconstrained
structures is not a trivial problem. A general algorithm of design does not exist (at least
nowadays). The appearance of new classes of underconstrained structures can be defined
as a discovery. In this sense two new classes of space underconstrained structures presented
above may be of interest both from a practical and theoretical point of view. It is worth
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noting that only an existence in principle of the new classes was found. The problems of
practical realization of these structures (construction, control of prestressing and so on)
are waiting for response.

(2) Today two types of underconstrained reticulated structures were in discussion and
utilization.

The first one is cable nets. In this case all members are under tension. The second one
is tensegric (or tensegrity) structures. In this case one compressed bar at every node provides
tension of the remaining members. An impressive example of this kind is Geiger's tensegrity
dome (see Pellegrino, 1992). Underconstrained space structures demonstrated in the present
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paper do not belong to the known types since they contain two or more compressed
members at a node.
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APPENDIX: NUMERICAL REALIZATION OF INITIAL STATE STABILITY TEST

Last years multipurpose software. for example Mathematica [Wolfram. S. (1991). Mathematica: A System
for Doing Mathematics by Computer. 2nd edn. Addison-Wesley. New York]. provides both numerical and at the
same time symbolic treatment of data and allows researchers to avoid programming by using any kind of high
level computer language. Application of the Mathematica software to underconstrained structures stability test is
considered below.

I. Preliminaries
The key concept of the application is the concept of the "topological equilibrium matrix" G. Its dimension

is m by n. Its elements are differences of "degrees of freedom" of pin-joints. For example, see Fig. Al (a),

Here index i indicates the permissible degree of freedom of the node in the horizontal direction, index k indicates
the permissible degree of freedom in the same direction of the adjacent node connected by the j member with the
first one.

Similarly, indexes i+ I and k+ J are associated with degrees of freedom in the vertical direction.
If degrees of freedom of some nodes are barred due to supports [Fig. Al (b)] then

Gi _ Li = Xi. I-X;:-+-\,

Thus, "topological equilibrium matrix" is presented as a function of components of two kinds of vectors: vector
x of permissible degrees of freedom of dimension m and vector x' of barred degrees of freedom of dimension m'.
Obviously the sum m +m' equals two times (or three times in the space case) the number of the nodes. It can be
written in a symbolic form

G = G(x.x')

Now it is possible to go from the "topological equilibrium matrix" to both the initial equilibrium matrix Ao and
perturbed equilibrium matrix A. Indeed. if

x=X

x' = X'

where X is a vector of initial nodal coordinates and X' is a vector of coordinates of supported nodes. then the
initial equilibrium matrix is obtained

Ao = G(X. X').

If

x=U

x' = 0

then the perturbated equilibrium matrix is obtained

A = G(U,O).

The purely "kinematic" perturbated equilibrium matrix is presented in the form

A k = G(Uk,O)
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Z={Zj""_m_r}T

where =i is an unknown parameter and ei is matrix AJ nullspace basis vector. It is necessary to note that elements
of equilibrium matrices are not divided by the members lengths Ii. so the elements are not direction cosines.
Consequently, there are "constraint reactions" Pi instead of real member forces P;

This approach is very suitable.
Now the "kinematic" stiffness matrix is obtained from the expression

where

Here, Ii is an unknown parameter, Pi is matrix An == G(X, X') nullspace basis vector. By this means q is a function
of m - r parameters =i and n - r parameters Ii and it may be presented in quadratic form as

Coefficients qii are nothing but "kinematic" stiffness matrix elements

ql./II

The CP-algorithm can be effectively used to obtain a nonzero set of Ii which provides positive definiteness of the
matrix Kk

•

2. Malhemalica commands
Now everything discussed is demonstrated with Mathemalica commands.

In[]'== < < LinearAlgebra'MatrixManipulation'
In[],=G = ZeroMatrix[20, 17]
Out[]= ...
This command forms 20 by 17 ( for example) matrix of zeros.
In[ ],=G[[l, I]] = x[[I]] - x[(...]];G[[l ,2]] = x[(l]] - xs[[... ]]: ...
Out[]= ...
This command introduces nonzero elements of the "topological equilibrium matrix" which are differences of
elements X[[l]], xs[[m of vectors of permissible degrees of freedom and barred degrees of freedom.

It is more suitable to prepare nonzero elements of G beforehand in file "G.dat" and then to enter it in the
following manner
In[]'=< <G.dat
Out[]= ...
Now initial coordinates vectors X,X' are entered
In[]'=X= (... };XS={ ... }
Out[] == ..
These vectors may be prepared beforehand too.
The next commands produce the initial equilibrium matrix All
In[]'=x=X;xs=XS:AO=G
Out[]= ...
Now matrix ~ nullspace is calculated
In[ ],=NullSpace[AO]
Out[]= [{ ... }, ... }}
In[],=Dimensions[%]
Out[] = [2.17]
It means that the matrix of the nullspace basis vectors consists of two vectors and initial member forces (constraint
reactions) may be expressed as
In[]'=PO= t[[I]]*%%[[I]] + t[[2]]*%% [[2]]
Out[]= ...
Here symbols % indicate the previous operation result, % % indicates preprevious operation result and so on.
Similarly, matrix AJ nullspace basis vectors or, in other words, matrix WT is obtained
In[],=Wt = NullSpace[Transpose[AO]]
Out[]= ..
In[ ]'=Dimensions[Wt]
Out[] = [5,20]
and Uk is presented as
In[ ],= Uk =zl *Wt[[I]] + ... +z5*Wt[[5]]
Out[]= ...
Now perturbated equilibrium matrix Ak is obtained
In[]'=x= Uk;xs= {O, ... ,O};Ak=G
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Out[]= ...
and the expression for q takes the form
In[]'=q = Expand[(Ak.PO).Uk]
Out[]= ...
Let us form the "kinematic" stiffness matrix Kk

In[]'= {{Coeflicient[q,zl*zlj, ... ,Coeflicient[q,zl*z5]},
{0,Coeflicient[q,z2*z2], ... ,Coeflicient[q,z2*z5] },

1103

{0,0,0,0,Coeflicient[q,z5*z5]} }
Out[]= ...
In[j,=Kk = %/2 +Transpose[%]i2
Out[]= ...
Kk positiveness for given parameters Ii is checked in the following manner
In[]'=t = {... ,... }
Out[]= ...
In[] ,= Eigenvalues[Kk]
Out[]= {...}
If all components of the matrix Kk eigenvalues vector are positive then the matrix is positive definite. In the general
case, it is necessary to find a set of parameters (which produce matrix Kk positive definiteness. It may be done in
the following manner
In[ ],=t = {tl - t2,t3 - t4}
Out[]= ...
In[] ,=ConstrainedMax[e,

{tl < 100,t2< 100,t3< 100,t4< 100,
Kk[[l,I]] ~e>0,... ,Kk[[5,5J] -e >0:,
{e,t I,t2,t3,t4}]

Out[]={ ... ,{e- > ...,tl- > ... ,t4- > ... }]
Then by substituting differences of obtained nonnegative values 11,12,13,14 into vector t the last one takes the form
In[]'=t={ ....... }
Out[]= ...
and eigenvalues are checked again.
If not all eigenvalues are positive then the next step of the iterative procedure is carried out.
In[] ,=R = Eigenvectors[Kk]
Out[]= ...
In[]'=t= {t1-t2,t3-t4}
Out[]= ...
In[ ],=ConstrainedMax[e,

[tl < 100,t2< 100,t3< 100,t4< 100,
Kk[[l, IJJ -e > 0.... ,Kk[[5.5J] ~ e > O.
(Kk.R[[I))).R[[I]]-e>0, ... ,(Kk.R[[5))).R[[5J] -e>O}.
{e,t1.t2,t3,t4}]

Out[]={ .... {e-> ....tl-> ....t4-> ... }}
Kk positiveness is checked again.
In[]'=t= {....... }
Out[] = ...
In[],=Eigenvalues[Kk]
Out[]= ...
The iterative procedure is continued by adding inequalities with new eigenvectors into the linear programming
problem as on the second iteration.
After some steps positive or zero eigenvalues are reached. The last means that the solution does not exist and the
structure is unstable. It is necessary to note that values 11.12,13,14 are limited by 100. Generally speaking it is
possible to use other limits. It is necessary to do this to avoid the appearance of an unbounded domain otherwise
the linear programming procedure does not converge.

Finishing consideration of stability test numerical realization it is worth discussing briefly the problem of
matrix An singularity.
It may happen that Malhemalica does not calculate the matrix nullspace
In[],=NullSpace[AO]
Out[]= [}
It means that the matrix is not perceived as singular by the software. This matrix is not "machine singular matrix"
(MSM). Nevertheless, this matrix may be very close to MSM. Such a type of matrix can be called a "physically
singular matrix" (PSM). Its minors proximity to zero is determined by accuracy of initial data which is limited by
necessary physical measurements. Consequently. desired accuracy to satisfy software requirement for singularity
is not always attained. Nevertheless, it is possible to operate with PSM replacing it by corresponding MSM. The
last one can be created with the help of Singular Value Decomposition procedure. For example
In[],=AOPSM =AO
Out[]= ...
In[] ,= (a l.a2,a3} = SingularValues[AOPSM]
Out[]= ...
In[]=a2
Out[] = [2 ..0.5.0.00002]
Here a2 is a vector of singular values. Since the smallest singular value is some orders of magnitude different from
the rest it can be replaced by zero.
In[]'=a2[[3]J =0
Out[]= ...
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And MSM is gathered
In[],=AOMSM=Transpose[al].DiagonalMatrix[a2].a3
Out[]= ...
Finally
In[],=NullSpace[AOMSM]
Out[]={ ... )


